3.2.94 \(\int \frac {\sec ^3(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx\) [194]

3.2.94.1 Optimal result
3.2.94.2 Mathematica [C] (verified)
3.2.94.3 Rubi [A] (warning: unable to verify)
3.2.94.4 Maple [A] (verified)
3.2.94.5 Fricas [A] (verification not implemented)
3.2.94.6 Sympy [F]
3.2.94.7 Maxima [A] (verification not implemented)
3.2.94.8 Giac [A] (verification not implemented)
3.2.94.9 Mupad [F(-1)]

3.2.94.1 Optimal result

Integrand size = 23, antiderivative size = 185 \[ \int \frac {\sec ^3(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {9 \text {arctanh}\left (\frac {\sqrt {a+a \sin (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{32 \sqrt {2} a^{5/2} d}-\frac {\sec ^2(c+d x)}{7 d (a+a \sin (c+d x))^{5/2}}-\frac {3}{16 a d (a+a \sin (c+d x))^{3/2}}-\frac {9 \sec ^2(c+d x)}{70 a d (a+a \sin (c+d x))^{3/2}}-\frac {9}{32 a^2 d \sqrt {a+a \sin (c+d x)}}+\frac {9 \sec ^2(c+d x)}{40 a^2 d \sqrt {a+a \sin (c+d x)}} \]

output
-1/7*sec(d*x+c)^2/d/(a+a*sin(d*x+c))^(5/2)-3/16/a/d/(a+a*sin(d*x+c))^(3/2) 
-9/70*sec(d*x+c)^2/a/d/(a+a*sin(d*x+c))^(3/2)+9/64*arctanh(1/2*(a+a*sin(d* 
x+c))^(1/2)*2^(1/2)/a^(1/2))/a^(5/2)/d*2^(1/2)-9/32/a^2/d/(a+a*sin(d*x+c)) 
^(1/2)+9/40*sec(d*x+c)^2/a^2/d/(a+a*sin(d*x+c))^(1/2)
 
3.2.94.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.06 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.23 \[ \int \frac {\sec ^3(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=-\frac {a \operatorname {Hypergeometric2F1}\left (-\frac {7}{2},2,-\frac {5}{2},\frac {1}{2} (1+\sin (c+d x))\right )}{14 d (a+a \sin (c+d x))^{7/2}} \]

input
Integrate[Sec[c + d*x]^3/(a + a*Sin[c + d*x])^(5/2),x]
 
output
-1/14*(a*Hypergeometric2F1[-7/2, 2, -5/2, (1 + Sin[c + d*x])/2])/(d*(a + a 
*Sin[c + d*x])^(7/2))
 
3.2.94.3 Rubi [A] (warning: unable to verify)

Time = 0.69 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.04, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {3042, 3160, 3042, 3160, 3042, 3166, 3042, 3146, 61, 61, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^3(c+d x)}{(a \sin (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cos (c+d x)^3 (a \sin (c+d x)+a)^{5/2}}dx\)

\(\Big \downarrow \) 3160

\(\displaystyle \frac {9 \int \frac {\sec ^3(c+d x)}{(\sin (c+d x) a+a)^{3/2}}dx}{14 a}-\frac {\sec ^2(c+d x)}{7 d (a \sin (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {9 \int \frac {1}{\cos (c+d x)^3 (\sin (c+d x) a+a)^{3/2}}dx}{14 a}-\frac {\sec ^2(c+d x)}{7 d (a \sin (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3160

\(\displaystyle \frac {9 \left (\frac {7 \int \frac {\sec ^3(c+d x)}{\sqrt {\sin (c+d x) a+a}}dx}{10 a}-\frac {\sec ^2(c+d x)}{5 d (a \sin (c+d x)+a)^{3/2}}\right )}{14 a}-\frac {\sec ^2(c+d x)}{7 d (a \sin (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {9 \left (\frac {7 \int \frac {1}{\cos (c+d x)^3 \sqrt {\sin (c+d x) a+a}}dx}{10 a}-\frac {\sec ^2(c+d x)}{5 d (a \sin (c+d x)+a)^{3/2}}\right )}{14 a}-\frac {\sec ^2(c+d x)}{7 d (a \sin (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3166

\(\displaystyle \frac {9 \left (\frac {7 \left (\frac {5}{4} a \int \frac {\sec (c+d x)}{(\sin (c+d x) a+a)^{3/2}}dx+\frac {\sec ^2(c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )}{10 a}-\frac {\sec ^2(c+d x)}{5 d (a \sin (c+d x)+a)^{3/2}}\right )}{14 a}-\frac {\sec ^2(c+d x)}{7 d (a \sin (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {9 \left (\frac {7 \left (\frac {5}{4} a \int \frac {1}{\cos (c+d x) (\sin (c+d x) a+a)^{3/2}}dx+\frac {\sec ^2(c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )}{10 a}-\frac {\sec ^2(c+d x)}{5 d (a \sin (c+d x)+a)^{3/2}}\right )}{14 a}-\frac {\sec ^2(c+d x)}{7 d (a \sin (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3146

\(\displaystyle \frac {9 \left (\frac {7 \left (\frac {5 a^2 \int \frac {1}{(a-a \sin (c+d x)) (\sin (c+d x) a+a)^{5/2}}d(a \sin (c+d x))}{4 d}+\frac {\sec ^2(c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )}{10 a}-\frac {\sec ^2(c+d x)}{5 d (a \sin (c+d x)+a)^{3/2}}\right )}{14 a}-\frac {\sec ^2(c+d x)}{7 d (a \sin (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {9 \left (\frac {7 \left (\frac {5 a^2 \left (\frac {\int \frac {1}{(a-a \sin (c+d x)) (\sin (c+d x) a+a)^{3/2}}d(a \sin (c+d x))}{2 a}-\frac {1}{3 a (a \sin (c+d x)+a)^{3/2}}\right )}{4 d}+\frac {\sec ^2(c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )}{10 a}-\frac {\sec ^2(c+d x)}{5 d (a \sin (c+d x)+a)^{3/2}}\right )}{14 a}-\frac {\sec ^2(c+d x)}{7 d (a \sin (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {9 \left (\frac {7 \left (\frac {5 a^2 \left (\frac {\frac {\int \frac {1}{(a-a \sin (c+d x)) \sqrt {\sin (c+d x) a+a}}d(a \sin (c+d x))}{2 a}-\frac {1}{a \sqrt {a \sin (c+d x)+a}}}{2 a}-\frac {1}{3 a (a \sin (c+d x)+a)^{3/2}}\right )}{4 d}+\frac {\sec ^2(c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )}{10 a}-\frac {\sec ^2(c+d x)}{5 d (a \sin (c+d x)+a)^{3/2}}\right )}{14 a}-\frac {\sec ^2(c+d x)}{7 d (a \sin (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {9 \left (\frac {7 \left (\frac {5 a^2 \left (\frac {\frac {\int \frac {1}{2 a-a^2 \sin ^2(c+d x)}d\sqrt {\sin (c+d x) a+a}}{a}-\frac {1}{a \sqrt {a \sin (c+d x)+a}}}{2 a}-\frac {1}{3 a (a \sin (c+d x)+a)^{3/2}}\right )}{4 d}+\frac {\sec ^2(c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )}{10 a}-\frac {\sec ^2(c+d x)}{5 d (a \sin (c+d x)+a)^{3/2}}\right )}{14 a}-\frac {\sec ^2(c+d x)}{7 d (a \sin (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {9 \left (\frac {7 \left (\frac {5 a^2 \left (\frac {\frac {\text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2}}\right )}{\sqrt {2} a^{3/2}}-\frac {1}{a \sqrt {a \sin (c+d x)+a}}}{2 a}-\frac {1}{3 a (a \sin (c+d x)+a)^{3/2}}\right )}{4 d}+\frac {\sec ^2(c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )}{10 a}-\frac {\sec ^2(c+d x)}{5 d (a \sin (c+d x)+a)^{3/2}}\right )}{14 a}-\frac {\sec ^2(c+d x)}{7 d (a \sin (c+d x)+a)^{5/2}}\)

input
Int[Sec[c + d*x]^3/(a + a*Sin[c + d*x])^(5/2),x]
 
output
-1/7*Sec[c + d*x]^2/(d*(a + a*Sin[c + d*x])^(5/2)) + (9*(-1/5*Sec[c + d*x] 
^2/(d*(a + a*Sin[c + d*x])^(3/2)) + (7*(Sec[c + d*x]^2/(2*d*Sqrt[a + a*Sin 
[c + d*x]]) + (5*a^2*(-1/3*1/(a*(a + a*Sin[c + d*x])^(3/2)) + (ArcTanh[(Sq 
rt[a]*Sin[c + d*x])/Sqrt[2]]/(Sqrt[2]*a^(3/2)) - 1/(a*Sqrt[a + a*Sin[c + d 
*x]]))/(2*a)))/(4*d)))/(10*a)))/(14*a)
 

3.2.94.3.1 Defintions of rubi rules used

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3146
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_.), x_Symbol] :> Simp[1/(b^p*f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x 
)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && I 
ntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/ 
2])
 

rule 3160
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x 
])^m/(a*f*g*(2*m + p + 1))), x] + Simp[(m + p + 1)/(a*(2*m + p + 1))   Int[ 
(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, 
f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] & 
& IntegersQ[2*m, 2*p]
 

rule 3166
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_. 
)*(x_)]], x_Symbol] :> Simp[(-b)*((g*Cos[e + f*x])^(p + 1)/(a*f*g*(p + 1)*S 
qrt[a + b*Sin[e + f*x]])), x] + Simp[a*((2*p + 1)/(2*g^2*(p + 1)))   Int[(g 
*Cos[e + f*x])^(p + 2)/(a + b*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, e 
, f, g}, x] && EqQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*p]
 
3.2.94.4 Maple [A] (verified)

Time = 0.72 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.76

method result size
default \(\frac {2 a^{3} \left (-\frac {1}{8 a^{5} \sqrt {a +a \sin \left (d x +c \right )}}-\frac {1}{16 a^{4} \left (a +a \sin \left (d x +c \right )\right )^{\frac {3}{2}}}-\frac {1}{20 a^{3} \left (a +a \sin \left (d x +c \right )\right )^{\frac {5}{2}}}-\frac {1}{28 a^{2} \left (a +a \sin \left (d x +c \right )\right )^{\frac {7}{2}}}-\frac {\frac {\sqrt {a +a \sin \left (d x +c \right )}}{4 a \sin \left (d x +c \right )-4 a}-\frac {9 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{8 \sqrt {a}}}{16 a^{5}}\right )}{d}\) \(141\)

input
int(sec(d*x+c)^3/(a+a*sin(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
2*a^3*(-1/8/a^5/(a+a*sin(d*x+c))^(1/2)-1/16/a^4/(a+a*sin(d*x+c))^(3/2)-1/2 
0/a^3/(a+a*sin(d*x+c))^(5/2)-1/28/a^2/(a+a*sin(d*x+c))^(7/2)-1/16/a^5*(1/4 
*(a+a*sin(d*x+c))^(1/2)/(a*sin(d*x+c)-a)-9/8*2^(1/2)/a^(1/2)*arctanh(1/2*( 
a+a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))))/d
 
3.2.94.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.22 \[ \int \frac {\sec ^3(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {315 \, \sqrt {2} {\left (3 \, \cos \left (d x + c\right )^{4} - 4 \, \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{4} - 4 \, \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )\right )} \sqrt {a} \log \left (-\frac {a \sin \left (d x + c\right ) + 2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} + 3 \, a}{\sin \left (d x + c\right ) - 1}\right ) - 4 \, {\left (315 \, \cos \left (d x + c\right )^{4} - 1092 \, \cos \left (d x + c\right )^{2} - 120 \, {\left (7 \, \cos \left (d x + c\right )^{2} - 3\right )} \sin \left (d x + c\right ) + 200\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{4480 \, {\left (3 \, a^{3} d \cos \left (d x + c\right )^{4} - 4 \, a^{3} d \cos \left (d x + c\right )^{2} + {\left (a^{3} d \cos \left (d x + c\right )^{4} - 4 \, a^{3} d \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )\right )}} \]

input
integrate(sec(d*x+c)^3/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas")
 
output
1/4480*(315*sqrt(2)*(3*cos(d*x + c)^4 - 4*cos(d*x + c)^2 + (cos(d*x + c)^4 
 - 4*cos(d*x + c)^2)*sin(d*x + c))*sqrt(a)*log(-(a*sin(d*x + c) + 2*sqrt(2 
)*sqrt(a*sin(d*x + c) + a)*sqrt(a) + 3*a)/(sin(d*x + c) - 1)) - 4*(315*cos 
(d*x + c)^4 - 1092*cos(d*x + c)^2 - 120*(7*cos(d*x + c)^2 - 3)*sin(d*x + c 
) + 200)*sqrt(a*sin(d*x + c) + a))/(3*a^3*d*cos(d*x + c)^4 - 4*a^3*d*cos(d 
*x + c)^2 + (a^3*d*cos(d*x + c)^4 - 4*a^3*d*cos(d*x + c)^2)*sin(d*x + c))
 
3.2.94.6 Sympy [F]

\[ \int \frac {\sec ^3(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\int \frac {\sec ^{3}{\left (c + d x \right )}}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

input
integrate(sec(d*x+c)**3/(a+a*sin(d*x+c))**(5/2),x)
 
output
Integral(sec(c + d*x)**3/(a*(sin(c + d*x) + 1))**(5/2), x)
 
3.2.94.7 Maxima [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.90 \[ \int \frac {\sec ^3(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=-\frac {\frac {4 \, {\left (315 \, {\left (a \sin \left (d x + c\right ) + a\right )}^{4} - 420 \, {\left (a \sin \left (d x + c\right ) + a\right )}^{3} a - 168 \, {\left (a \sin \left (d x + c\right ) + a\right )}^{2} a^{2} - 144 \, {\left (a \sin \left (d x + c\right ) + a\right )} a^{3} - 160 \, a^{4}\right )}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {9}{2}} a - 2 \, {\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {7}{2}} a^{2}} + \frac {315 \, \sqrt {2} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {a \sin \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {a \sin \left (d x + c\right ) + a}}\right )}{a^{\frac {3}{2}}}}{4480 \, a d} \]

input
integrate(sec(d*x+c)^3/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima")
 
output
-1/4480*(4*(315*(a*sin(d*x + c) + a)^4 - 420*(a*sin(d*x + c) + a)^3*a - 16 
8*(a*sin(d*x + c) + a)^2*a^2 - 144*(a*sin(d*x + c) + a)*a^3 - 160*a^4)/((a 
*sin(d*x + c) + a)^(9/2)*a - 2*(a*sin(d*x + c) + a)^(7/2)*a^2) + 315*sqrt( 
2)*log(-(sqrt(2)*sqrt(a) - sqrt(a*sin(d*x + c) + a))/(sqrt(2)*sqrt(a) + sq 
rt(a*sin(d*x + c) + a)))/a^(3/2))/(a*d)
 
3.2.94.8 Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.23 \[ \int \frac {\sec ^3(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {\sqrt {a} {\left (\frac {315 \, \sqrt {2} \log \left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {315 \, \sqrt {2} \log \left (-\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {70 \, \sqrt {2} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {4 \, \sqrt {2} {\left (140 \, \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 35 \, \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 14 \, \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 5\right )}}{a^{3} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}\right )}}{4480 \, d} \]

input
integrate(sec(d*x+c)^3/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")
 
output
1/4480*sqrt(a)*(315*sqrt(2)*log(cos(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(a^3*s 
gn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 315*sqrt(2)*log(-cos(-1/4*pi + 1/2*d 
*x + 1/2*c) + 1)/(a^3*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 70*sqrt(2)*co 
s(-1/4*pi + 1/2*d*x + 1/2*c)/((cos(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 1)*a^3*s 
gn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 4*sqrt(2)*(140*cos(-1/4*pi + 1/2*d*x 
 + 1/2*c)^6 + 35*cos(-1/4*pi + 1/2*d*x + 1/2*c)^4 + 14*cos(-1/4*pi + 1/2*d 
*x + 1/2*c)^2 + 5)/(a^3*cos(-1/4*pi + 1/2*d*x + 1/2*c)^7*sgn(cos(-1/4*pi + 
 1/2*d*x + 1/2*c))))/d
 
3.2.94.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^3(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^3\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

input
int(1/(cos(c + d*x)^3*(a + a*sin(c + d*x))^(5/2)),x)
 
output
int(1/(cos(c + d*x)^3*(a + a*sin(c + d*x))^(5/2)), x)